碳纖維的起源可追溯到19世紀后期,美國人愛迪生(Edson)用碳絲制作燈泡的燈絲,從而發明了電燈,給人類社會帶來了光明。但是在20世紀初期,美國通用電器公司的庫里基(Coolidge)發明了用鎢絲取代碳絲作為燈絲,并一直沿用至今。這使得碳絲一度退出了歷史舞臺。直到20世紀50年代,在美蘇冷戰和爭霸的時代背景下,為了解決戰略武器的耐高溫和耐燒蝕材料,碳纖維再次進入人們的關注視角。并自此以后,在材料科學領域掀起了碳纖維研究與開發熱潮,各種有機纖維被用來嘗試制備碳纖維。經過幾十年的發展,形成了聚丙烯腈(PAN)、瀝青和粘膠三大原料體系。其中,PAN基碳纖維因其生產工藝簡單、生產成本較低和力學性能優良的特點,已成為發展最快、產量最高、品種最多以及應用最廣的一種碳纖維。
PAN纖維的商品名為腈綸,廣泛用于服飾領域,由于其性能很像羊毛,故又稱為人造羊毛。首先發明用PAN纖維制造碳纖維的是日本大阪工業研究所的進藤昭男(Shindo)博士。他發現PAN纖維需經氧化處理才可得到碳纖維。隨后,英國皇家空軍研究所的瓦特(Watt)和約翰遜(Johnson)等人發現在氧化過程中施加張力牽伸才能制得高性能碳纖維。1969年,日本東麗公司(Toray)研制出共聚PAN原絲,結合美國聯合碳化物公司(Union Carbide)的炭化技術,生產出高強度、高模量碳纖維。如今,東麗公司的PAN基碳纖維無論質量還是產量都居世界前列,代表當今世界最高水平。
碳纖維作為一種高性能纖維,具有十分優異的力學性能,拉伸強度約為2~7GPa,拉伸模量約為200~700GPa。再加上它的重量很輕,密度約為1.5~2.0g/cm3,僅為鋼的四分之一,這使得碳纖維在所有高性能纖維中具有最高的比強度和比模量。除此之外,碳纖維還具有許多其它優良性能,如耐高溫、耐腐蝕、耐摩擦、耐疲勞、熱膨脹系數低、良好的導電導熱性能、電磁屏蔽性好等。在沒有氧氣存在的情況下,碳纖維能夠耐受3000oC以上的高溫,這是其他任何纖維材料無法與之相比的。而且,碳纖維對一般的有機溶劑、酸、堿都具有良好的耐腐蝕性,完全不存在生銹的問題。
如此優異的性能使碳纖維成為了材料科學與工程領域的耀眼明星。但碳纖維很少單獨使用,一般只通過與樹脂、金屬或者陶瓷等基體材料進行復合后再使用。碳纖維已成為先進復合材料最重要的增強材料。由于碳纖維復合材料具有輕而強、輕而剛、耐高溫、耐腐蝕、耐疲勞、結構尺寸穩定性好以及設計性好、可大面積整體成型等特點,目前已在航空航天、國防軍工和民用工業的各個領域得到廣泛應用。
碳纖維是火箭、衛星、導彈、戰斗機和艦船等尖端武器裝備必不可少的戰略基礎材料。將碳纖維復合材料應用在戰略導彈的彈體和發動機殼體上,可大大減輕重量,提高導彈的射程和突擊能力,如美國80年代研制的“侏儒”洲際導彈(圖3)三級殼體全都采用碳纖維/環氧樹脂復合材料。碳纖維復合材料在新一代戰斗機上也開始得到大量使用,如美國第四代戰斗機F22(圖4)采用了約為24%的碳纖維復合材料,從而使該戰斗機具有超高音速巡航、超視距作戰、高機動性和隱身等特性。碳纖維在艦艇上也有重要的應用價值,可減輕艦艇的結構重量,增加艦艇有效載荷,從而提高運送作戰物資的能力,而且,碳纖維不存在腐蝕生銹的問題,可以延長使用壽命和節省維護費用。 123,123
碳纖維還是讓大型民用飛機、汽車、高速列車等現代交通工具實現“輕量化”的完美材料。新一代大型民用客機空客A380(圖5)和波音787(圖6)使用了約為50%的碳纖維復合材料。這使飛機機體的結構重量減輕了20%,比同類飛機可節省20%的燃油,從而大幅降低了運行成本、減少二氧化碳排放。
碳纖維在風能、核能和太陽能等新能源領域也具有廣闊的應用前景。當風力發電機功率超過3MW,葉片長度超過40米時,傳統玻璃纖維復合材料的性能已經趨于極限,采用碳纖維復合材料制造葉片是必要的選擇。只有碳纖維才能既減輕葉片的重量,又能滿足強度和剛度的要求。
碳纖維在運動休閑領域中也一直獨領風騷,像高爾夫球桿、釣魚竿、網球拍羽毛球拍、自行車、滑雪杖、滑雪板、帆板桅桿、航海船體等高檔運動休閑用品都是碳纖維的主要用戶之一。近幾年來,碳纖維開始走進普通民眾的生活,像音響、浴霸、取暖器等家用電器以及手機、筆記本電腦等電子產品也可以看到碳纖維的身影。
碳纖維的應用產品不勝枚舉。隨著性能的進一步提升和價格的大幅降低,碳纖維的應用領域必將得到更寬廣的拓展。可以預見將來碳纖維不但會在高、精、尖領域大顯身手,而且還會成為普通民眾日常生活中最親密、最信賴的朋友。